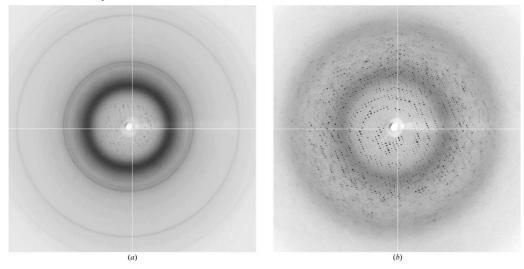
Question 1:

You are a scientist studying protein structure, function and interactions. You have access to X-ray crystallography, NMR and cryo-EM to solve some interesting problems from the world of protein biochemistry. Which of the 3 methods would you choose for each problem and why?

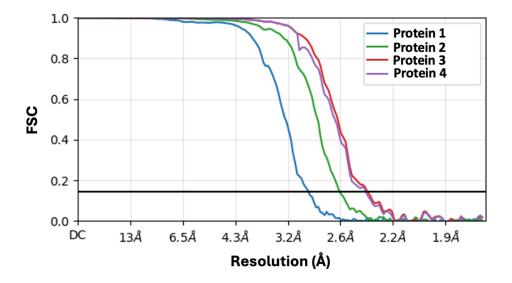
- a) You are studying a protein receptor on cell surface (MW=150 kDa) as a potential drug target. Through cycles of drug discovery, you identified that ligand X binds to your cell receptor and exerts the desired functional effect (i.e., inhibiton of downstream signaling). Which method would you use to study the molecular details of ligand-receptor interactions?
- b) In the pandemic time, scientists are intrigued by how the spike protein looks like on the virus particle itself in its native state. You decide to utilize the available facilities and expertise to answer that question. How would you solve the structure of the full COVID- 19 virus, knowing that it's molecular weight is approximately ~40MDa and the virus is pleomorphic (i.e., individual virions vary in size and shape)?
- c) You have a protein with molecular weigh of 20 kDa, which interacts with ligand Y through a known mechanism and a well-stablished binding site (pocket). You would like to introduce point mutations in the pocket that disrupt the binding to this molecule. What structural methods could you use to assess how these mutations influence the ligand binding pocket?
- d) You are trying to solve a structure of a protein (MW ~200kDa) which aggregates in solution at concentrations above 0.5 mg/ml. What method would be the most applicable in this scenario?

Question 2:

X-ray diffraction is one of the main methods for determination of macromolecular structures from crystals. However, there are some potential alternatives within the electromagnetic spectrum and within the subatomic particle space. Let's explore their applicability to this problem.

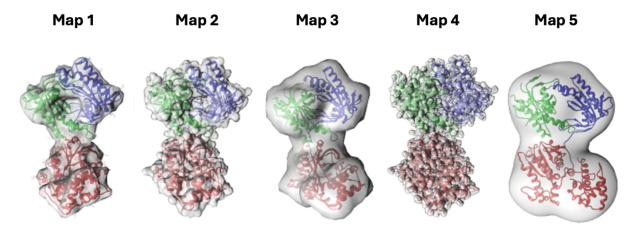

- a) Microwave radiation Can it be used in crystal diffraction experiments and allow to achieve atomic resolution? Explain.
- b) Gamma radiation Gamma (rays) have smaller wavelength compared to X-rays, and therefore a much lower diffraction limit. In theory, the maximum achievable resolution when using these rays would be superior. However they are not used for determination of biomolecular structures. Why do you think that is? Also, practically speaking, where could you perform such experiments?
- c) Electrons Can we use accelerated electrons instead of X-rays for crystal diffraction experiments? Do you think that crystal size would be an important factor for feasibility? Explain.

Question 3:


Multiple choice questions of Cryo-Electron Microscopy:	
1. During EM, a vacuum is created inside the a) room of operation b) specimen c) microscope d) objective lens system	
2. Which of the following component of EM collects the beam of electrons from the source a directs it towards the sample? a) ocular lens b) condenser lens c) stage d) projector lens	nd
3. Image formation in electron microscope is based on a) column dimensions b) objective aperture size c) differential electron scattering d) specimen size	
4. The biological materials have little intrinsic capability to scatter electrons compared water/ice which is why it is essential to have a) low voltage in the microscope b) highly focused beam from the condenser lens c) thin ice layer surrounding the biomolecule d) very steady stage with minimal drift	to
5 is the capacity to distinguish between two adjacent atoms or groups. a) Magnification b) Resolution c) Ionization d) Division	
6. How is resolution calculated in cryo-EM? a) Fourier Shell Correlation of half-sets b) Contrast Transfer Function c) R-factors d) Model-to-map agreement	

Question 4:

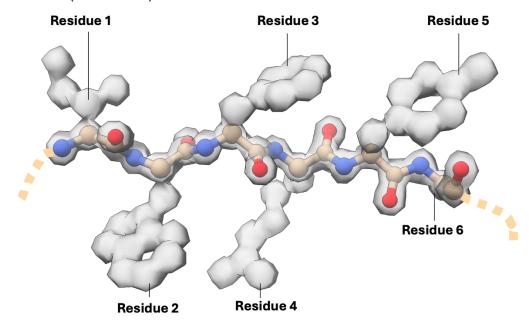
1) Below 2 pictures of X-ray diffraction pattern for the same protein. Which one has higher resolution? Why?


2) Below is the overlay of 4 FSC curves obtained by electron mciroscopy analysis of different proteins (1-4). The gold-standard line is shown in black. From these plots, estimate the resolution of each protein reconstruction and rank the maps from highest to lowest quality (in terms of resolution)?

Question 5:

Below are 5 maps of the same protein obtained by cryo-EM. The maps are presented as transparent gray surface and the corresponding model of the protein is shown with different domains colored in green, blue and red. The maps are all at different resolutions.

- a) Can you rank the maps from highest to lowest resolution? Optional: Try to estimate the resolutions by comparing the level of detail in each map to the underlying protein models.
- b) Which of the map(s) have sufficient quality to reliably place amino-acids into density?
- c) Which of the map(s) only offer information on the level of protein domain but do not have sufficient resolution to accurately build amino-acids or secondary structure elements?

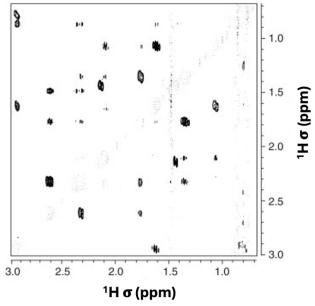

Question 6:

Jacques Dubochet, a Swiss scientist from Aigle, received the Nobel Prize in 2017 "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution". His contribution was the development of a method to rapidly freeze liquid protein sample in liquid ethane.

- a) Why does the protein sample need to be frozen for cryo-EM?
- b) Why does the protein sample need to be frozen rapidly in liquid ethane?
- c) It is common practice to wear masks while freezing grids and to dry all instruments that come into contact with the liquid ethane and nitrogen. Why?

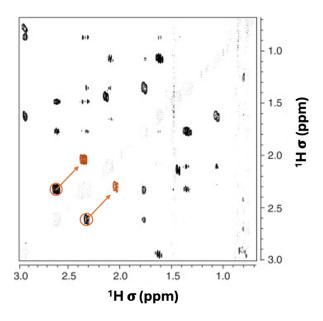
Question 7:

You have performed structural analysis of a new protein using cryoEM and recovered an excellent quality map that is at 1.5Å There are no previously published structures of related proteins and you have to build the atomic model from beginning. You arrive to this section of the map that consists of 6 connected amino-acids and you need to figure out which part of the protein it corresponds to. The polypeptide backbone is already included but the amino-acid identities (side-chains) are not known.

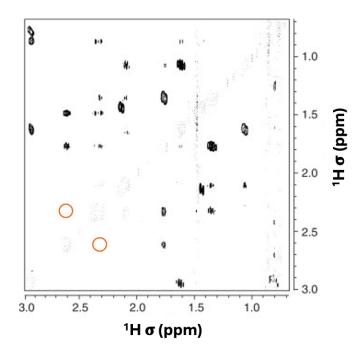

The sequence of the entire domain that also includes this region is:

----AFGRNTSWFRSSGIWFRYGTKEDGYYNPCLIHFNYRGSNTIWSRYGW----

Use your knowledge of amino-acid side-chains to infer which 6 consecutive amino-acids are shown in the map, and identify which section of the provided protein sequence it corresponds to. Note that at these resolutions you primarily see densities for heavy atoms (C, N, O) but not for hydrogens.


Question 8:

You are interested in resolving a structure of a small Calcium-binding protein by NMR. You collected a ¹H-¹H NOESY spectra of the protein in the absence of calcium and it looks like this:



a) What do the peaks in the spectra correspond to? What do the peak intensities tell you about the corresponding ¹H atom pairs?

b) Scenario 1: You added calcium to the protein and that resulted in shift of several peaks in the ¹H-¹H NOESY spectra (see below). What do you think is the explanation? Why did these ¹H exhibit a change in chemical shifts and others did not?

b) Scenario 2: You added calcium to the protein and that resulted in loss of several peaks in the ¹H-¹H NOESY spectra (see orange circles below). What do you think is the explanation? What is this reduction of peak intensity telling you about the corresponding ¹H pairs?

Question 9:

Below is a small part of a PDB file from two different structures (A and B). Can you identify what is different in terms of atom composition? Considering the atom composition, which structural biology method could have these structures originated from?

Structure A:

ATOM	2270	N	THR	Α	364	37.053	61.679	55.135	1.00	45.18	N
ATOM	2271	CA	THR	Α	364	36.644	63.002	55.575	1.00	41.40	C
ATOM	2272	C	THR	Α	364	35.133	63.162	55.498	1.00	42.51	C
ATOM	2273	0	THR	Α	364	34.526	63.741	56.395	1.00	41.87	0
ATOM	2274	CB	THR	Α	364	37.351	64.100	54.751	1.00	39.60	C
ATOM	2275	OG1	THR	Α	364	38.772	63.954	54.915	1.00	36.65	0
ATOM	2276	CG2	THR	Α	364	36.957	65.486	55.238	1.00	38.36	C
ATOM	2277	N	GLN	Α	365	34.539	62.643	54.433	1.00	40.74	N
ATOM	2278	CA	GLN	Α	365	33.089	62.723	54.269	1.00	40.85	C
ATOM	2279	C	GLN	A	365	32.396	61.991	55.413	1.00	42.74	C
ATOM	2280	0	GLN	Α	365	31.415	62.482	55.961	1.00	44.33	0
ATOM	2281	CB	GLN	A	365	32.673	62.090	52.945	1.00	42.48	C
ATOM	2282	CG	GLN	A	365	33.070	62.906	51.716	1.00	43.48	C
ATOM	2283	CD	GLN	Α	365	32.670	62.179	50.442	1.00	41.36	C
ATOM	2284		GLN			31.508	62.163	50.065	1.00	43.05	0
ATOM	2285	NE2	GLN			33.623	61.540	49.808	1.00	42.06	N
ATOM	2286	N	ILE	Α	366	32.898	60.810	55.761	1.00	46.58	Ν
ATOM	2287	CA	ILE			32.307	60.043	56.861		46.20	C
ATOM	2288	C	ILE			32.432	60.816	58.169		49.94	C
ATOM	2289	0			366	31.492	60.866	58.955		50.63	0
ATOM	2290	CB			366	33.008	58.673	56.996	1.00	43.57	C
ATOM	2291		ILE			32.766	57.878	55.730		42.97	C
ATOM	2292		ILE			32.495	57.932	58.231		42.86	C
ATOM	2293		ILE			33.601	56.636	55.618		42.38	C
ATOM	2294	N			367	33.582	61.441	58.413		51.38	N
ATOM	2295	CA			367	33.704	62.192	59.647		53.17	C
ATOM	2296	C			367	32.759	63.380	59.676		53.23	C
ATOM	2297	0	SER			32.302	63.772	60.740		54.16	0
ATOM	2298	CB	SER			35.167	62.637	59.903		54.34	C
ATOM	2299	OG	SER			35.575	63.694	59.063		56.93	0
ATOM	2300	N			368	32.457	63.962	58.512		50.86	N
ATOM	2301	CA	SER			31.548	65.107	58.465		48.18	C
ATOM	2302	C			368	30.132	64.650	58.878		45.09	С
ATOM	2303	0			368	29.438	65.325	59.646		47.04	0
ATOM	2304	CB	SER			31.536	65.712	57.052		49.16	C
ATOM	2305	OG	SER			30.680	66.848	57.009		52.42	0
ATOM	2306	N			369	29.710	63.503	58.361		44.98	N
ATOM	2307	CA	ALA			28.404	62.945	58.712		44.29	C
ATOM	2308	C	ALA			28.348	62.684	60.208		44.40	С
ATOM	2309	0			369	27.358	63.001	60.862		43.34	0
ATOM	2310	CB	ALA	Α	369	28.162	61.625	57.956	1.00	44.57	C

Structure B:

ATOM	1007	CA	LEU	Α	97	-8.354	1.914	-3.884	1.00	0.22	C
ATOM	1008	C	LEU	Α	97	-7.637	2.570	-5.058	1.00	0.21	C
ATOM	1009	0	LEU	Α	97	-7.259	3.734	-4.992	1.00	0.25	0
ATOM	1010	CB	LEU	A	97	-7.319	1.264	-2.966	1.00	0.25	C
ATOM	1011	CG	LEU	Α	97	-6.284	2.248	-2.408	1.00	0.38	C
ATOM	1012	CD1	LEU	A	97	-6.926	3.157	-1.381	1.00	0.52	C
ATOM	1013	CD2	LEU	Α	97	-5.097	1.524	-1.799	1.00	0.62	C
ATOM	1014	H	LEU	A	97	-9.265	0.002	-4.103	1.00	0.23	H
ATOM	1015	HA	LEU	Α	97	-8.885	2.676	-3.331	1.00	0.24	H
ATOM	1016	1HB	LEU	A	97	-7.837	0.802	-2.137	1.00	0.28	H
ATOM	1017	2HB	LEU	A	97	-6.796	0.500	-3.520	1.00	0.47	H
ATOM	1018	HG	LEU		97	-5.921	2.867	-3.215	1.00	0.46	H
ATOM	1019	1HD1	LEU	Α	97	-6.208	3.895	-1.056	1.00	1.11	H
ATOM	1020	2HD1	LEU	A	97	-7.778	3.652	-1.820	1.00	1.18	H
ATOM		3HD1			97	-7.247	2.570	-0.533	1.00	1.02	H
ATOM		1HD2			97	-5.412	0.988	-0.913	1.00	1.03	H
ATOM		2HD2			97	-4.690	0.829	-2.517	1.00	1.29	H
ATOM					97	-4.340	2.248	-1.529	1.00	1.25	H
ATOM	1025	N	GLU	Α	98	-7.467	1.814	-6.136	1.00	0.18	N
ATOM	1026	CA	GLU		98	-6.790	2.319	-7.326	1.00	0.19	C
ATOM	1027	С	GLU		98	-7.507	3.553	-7.874	1.00	0.17	С
ATOM	1028	0	GLU		98	-6.926	4.635	-7.956	1.00	0.20	0
ATOM	1029	CB	GLU		98	-6.735	1.227	-8.394	1.00	0.21	С
ATOM	1030	CG	GLU		98	-5.724	1.491	-9.495	1.00	0.27	С
ATOM	1031	CD	GLU		98	-6.131		-10.405	1.00	0.88	C
ATOM	1032	OE1			98	-5.528		-10.296	1.00	0.96	0
ATOM	1033	OE2			98	-7.051		-11.226	1.00	1.87	0
ATOM	1034	H	GLU		98	-7.838	0.907	-6.144	1.00	0.18	H
ATOM	1035	HA	GLU		98	-5.783	2.591	-7.050	1.00	0.22	H
ATOM	1036	1HB	GLU		98	-6.481	0.290	-7.921	1.00	0.27	H
ATOM	1037		GLU		98	-7.711	1.136	-8.848	1.00	0.31	H
ATOM	1038		GLU		98	-4.773	1.731	-9.045	1.00	0.85	H
ATOM	1039	2HG	GLU	A	98	-5.625	0.595	-10.088	1.00	1.00	H